•Noticia
La investigación se publica en un artículo en la revista ‘Biomaterials’
El IBEC revela una nueva estrategia para reparar el sistema nervioso central
Investigadores del Instituto de Bioingeniería de Catalunya (IBEC) y de la Universidad de Barcelona (UB) han descubierto una nueva estrategia para regenerar el sistema nervioso central. Los resultados de la investigación se han publicado en el último número de la revista ‘Biomaterials’.
05/02/2013
Pese a los recientes avances en la comprensión de los mecanismos de las lesiones nerviosas, a la ingeniería de tejidos le sigue costando encontrar soluciones para reparar daños en el sistema nervioso central, a causa del papel crucial y complejo que juegan en él los nichos de células madre neurales. Estas zonas, en las que las células madre quedan reservadas después del desarrollo embrionario para la producción de nuevas células, ejercen un control muy estricto sobre muchas tareas cruciales, como la promoción del crecimiento y la recreación de las señales bioquímicas y físicas esenciales para la diferenciación celular neural.
Según explica la primera autora del artículo, Zaida Álvarez, del grupo de Biomateriales para Terapias Regenerativas del IBEC, “para poder desarrollar estrategias de ingeniería de tejidos que permitan reparar los daños en el sistema nervioso central, es esencial diseñar biomateriales que imiten con mucha precisión los nichos de células madre neurales y sus características químicas y bioquímicas”.
Lograr que el sistema nervioso central se regenere podría abrir la puerta hacia nuevas y prometedoras estrategias con el fin de afrontar los daños causados por accidentes, además de los que provocan numerosas afecciones como los derrames y enfermedades degenerativas como el Parkinson y el Alzheimer.
En el estudio, liderado por la investigadora de la UB Soledad Alcántara, el equipo probó diferentes tipos de ácido poliláctico (PLA) con distintas proporciones de isómeros L y D/L, un material biodegradable que permite la adhesión y el crecimiento celular neural. Así, se descubrió que uno de ellos, el PLA con una proporción de isómeros 70/30 (PLA70/30), mantenía los grupos de células progenitoras neuronales y gliales in vitro. El PLA70/30 era más amorfo, se degradaba más rápido y, lo más importante, liberaba importantes cantidades de L-lactato, esencial para el mantenimiento de las células progenitoras neurales. “El objetivo del trabajo era encontrar un biomaterial capaz de mantener la población de células progenitoras neurales y de generar nuevas células diferenciadas con el fin de iniciar el desarrollo de un implante que permita la regeneración cerebral”, apunta Alcántara.
“Las propiedades mecánicas y de superficie del PLA70/30, que usamos aquí en forma de películas microdelgadas, hacen que sea un buen substrato para la adhesión, proliferación y diferenciación de las células neurales”, indica Zaida Álvarez, y añade que “las propiedades físicas del material y la liberación de L-lactato en su degradación, que proporciona un substrato oxidativo alternativo para las células neurales, actúan sinergísticamente modulando fenotipos progenitores”.
Los resultados sugieren que la introducción de patrones 3D imitando la arquitectura de los nichos de células madre neurales embrionarias en estructuras realizadas con PLA70/30 puede ser un buen punto de partida para el diseño de dispositivos implantables en el cerebro. “Éstos podrán inducir o activar células progenitoras neurales ya existentes a que se autorenueven y produzcan nuevas neuronas, potenciando la respuesta regenerativa del sistema nervioso central in situ”, añade la investigadora.
La investigación ha sido publicada a la revista Biomaterials a través del artículo “The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche”, de los investigadores Zaida Álvarez, Miguel A. Mateos-Timoneda, Petra Hyroššová, Oscar Castaño, Josep A. Planell, José C. Perales, Elisabeth Engel y Soledad Alcántara.
Han participado en la investigación el grupo de Biomateriales para Terapias Regenerativas del IBEC —centro de investigación fundado por la Generalitat de Catalunya, la Universitat Politècnica de Catalunya · BarcelonaTech (UPC) y la UB—; el Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica de la UPC; los Departamentos de Patología y Terapéutica Experimental y de Ciencias Fisiológicas de la UB; y el Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) del Instituto de Salud Carlos III.
Según explica la primera autora del artículo, Zaida Álvarez, del grupo de Biomateriales para Terapias Regenerativas del IBEC, “para poder desarrollar estrategias de ingeniería de tejidos que permitan reparar los daños en el sistema nervioso central, es esencial diseñar biomateriales que imiten con mucha precisión los nichos de células madre neurales y sus características químicas y bioquímicas”.
Lograr que el sistema nervioso central se regenere podría abrir la puerta hacia nuevas y prometedoras estrategias con el fin de afrontar los daños causados por accidentes, además de los que provocan numerosas afecciones como los derrames y enfermedades degenerativas como el Parkinson y el Alzheimer.
En el estudio, liderado por la investigadora de la UB Soledad Alcántara, el equipo probó diferentes tipos de ácido poliláctico (PLA) con distintas proporciones de isómeros L y D/L, un material biodegradable que permite la adhesión y el crecimiento celular neural. Así, se descubrió que uno de ellos, el PLA con una proporción de isómeros 70/30 (PLA70/30), mantenía los grupos de células progenitoras neuronales y gliales in vitro. El PLA70/30 era más amorfo, se degradaba más rápido y, lo más importante, liberaba importantes cantidades de L-lactato, esencial para el mantenimiento de las células progenitoras neurales. “El objetivo del trabajo era encontrar un biomaterial capaz de mantener la población de células progenitoras neurales y de generar nuevas células diferenciadas con el fin de iniciar el desarrollo de un implante que permita la regeneración cerebral”, apunta Alcántara.
“Las propiedades mecánicas y de superficie del PLA70/30, que usamos aquí en forma de películas microdelgadas, hacen que sea un buen substrato para la adhesión, proliferación y diferenciación de las células neurales”, indica Zaida Álvarez, y añade que “las propiedades físicas del material y la liberación de L-lactato en su degradación, que proporciona un substrato oxidativo alternativo para las células neurales, actúan sinergísticamente modulando fenotipos progenitores”.
Los resultados sugieren que la introducción de patrones 3D imitando la arquitectura de los nichos de células madre neurales embrionarias en estructuras realizadas con PLA70/30 puede ser un buen punto de partida para el diseño de dispositivos implantables en el cerebro. “Éstos podrán inducir o activar células progenitoras neurales ya existentes a que se autorenueven y produzcan nuevas neuronas, potenciando la respuesta regenerativa del sistema nervioso central in situ”, añade la investigadora.
La investigación ha sido publicada a la revista Biomaterials a través del artículo “The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche”, de los investigadores Zaida Álvarez, Miguel A. Mateos-Timoneda, Petra Hyroššová, Oscar Castaño, Josep A. Planell, José C. Perales, Elisabeth Engel y Soledad Alcántara.
Han participado en la investigación el grupo de Biomateriales para Terapias Regenerativas del IBEC —centro de investigación fundado por la Generalitat de Catalunya, la Universitat Politècnica de Catalunya · BarcelonaTech (UPC) y la UB—; el Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica de la UPC; los Departamentos de Patología y Terapéutica Experimental y de Ciencias Fisiológicas de la UB; y el Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) del Instituto de Salud Carlos III.
Síguenos en Twitter


